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RESUMEN 

En una época marcada por la creciente interconexión global y por los impactos evidentes del 

cambio climático, el enfoque del nexo WEF (agua-energía-alimentos) se posiciona como un 

instrumento fundamental para evaluar y anticipar escenarios orientados a la sostenibilidad. Este 

enfoque se articula directamente con la Agenda 2030 y sus Objetivos de Desarrollo Sostenible. 

El estudio analiza cómo el uso de técnicas de aprendizaje automático y modelos de machine 

learning puede contribuir a mejorar y gestionar de forma eficiente las relaciones entre estos 

sistemas y anticipar escenarios futuros a partir del análisis del nexo. La aplicación de KDD como 

metodología de implementación permitió la recopilación y limpieza de los datos, fases en las que 

se evidenciaron vacíos en las series. Para completar las series de datos de la producción y energía, 

se aplican interpolaciones y extrapolaciones lineales. Se validan 7 modelos de regresión 

supervisada (Regresión Lineal, Random Forest, SVR, Red Neuronal Artificial, Gradient 

Boosting, XGBoost, KNN). De los modelos evaluados, XGBoost presenta el mejor desempeño y 

bajo error 𝑅2  = 0.92. No obstante, las estimaciones a diez años muestran que la producción 

agrícola tiende a mantenerse prácticamente sin variaciones, esto se atribuye a la escasez de datos 

y a su poca variabilidad, lo que evidenció 5 limitantes, las mismas que al ser tratadas de manera 

técnica le dotan al modelo una alta estabilidad (R² = 0.965 ± 0.025), y una baja incertidumbre de 
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± 20.000 kg, reforzando su confiabilidad como herramienta de alerta temprana en el sistema 

agrícola de Galápagos. 

 

Palabras clave: nexo, machine learning, datos 

 

ABSTRACT 

In an era marked by increasing global interconnectedness and the evident impacts of climate 

change, the WEF nexus approach (water-energy-food) is positioned as a fundamental tool for 

assessing and anticipating sustainability-oriented scenarios. This approach is directly aligned with 

the 2030 Agenda and its Sustainable Development Goals. The study analyzes how the use of 

machine learning techniques and models can contribute to improving and efficiently managing 

the relationships between these systems and anticipating future scenarios based on nexus analysis. 

The application of KDD as the implementation methodology allowed for data collection and 

cleaning, phases in which gaps in the data series became evident. To complete the production and 

energy data series, linear interpolations and extrapolations were applied. Seven supervised 

regression models were validated (Linear Regression, Random Forest, SVR, Artificial Neural 

Network, Gradient Boosting, XGBoost, KNN). Of the models evaluated, XGBoost presents the 

best performance and low error R^(2 ) = 0.92. However, ten-year estimates show that agricultural 

production tends to remain practically unchanged. This is attributed to the scarcity of data and its 

low variability, which revealed 5 limitations. When these limitations are addressed technically, 

they give the model high stability (R² = 0.965 ± 0.025) and a low uncertainty of ± 20,000 kg, 

reinforcing its reliability as an early warning tool in the Galapagos agricultural system 
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INTRODUCCIÓN 

En un escenario orientado a la sostenibilidad y marcado por crisis en los recursos hídricos, 

energéticos y alimentarios, la medición del nexo agua-energía-alimentos (WEF) en una región 

específica cobra especial relevancia debido a la vulnerabilidad de cada sector (Sánchez-Zarco et 

al., 2021). La interacción entre el nexo WEF y los servicios ecosistémicos urbanos (SEU) genera 

un impacto significativo, por lo que resulta esencial estudiar su correlación y efectos en la 

población (Ding et al., 2023) 

El enfoque del nexo agua–energía–alimentos (WEF) aborda la forma en que estos tres 

sistemas se relacionan e influyen entre sí de manera dinámica. Su interacción no solo es 

inseparable, sino que además varía de acuerdo con el espacio y el tiempo, lo que evidencia que la 

administración sectorial tradicional resulta limitada para enfrentar los problemas globales 

actuales. Entre estos desafíos se incluyen el cambio climático, la reducción de recursos 

disponibles, el deterioro de los ecosistemas y la creciente preocupación por la seguridad 

alimentaria. (Simpson & Jewitt, 2019). 

En América Latina y el Caribe, una proporción significativa de las actividades económicas 

se sustenta en la explotación y uso intensivo de los recursos naturales. En este marco, el sector 

agrícola depende del recurso hídrico para garantizar el riego y el adecuado desarrollo de los 

cultivos. De manera paralela, el sector energético requiere agua tanto para la generación 

hidroeléctrica como para los procesos de refrigeración asociados a diversas tecnologías de 

producción. Asimismo, la energía constituye un insumo esencial para la captación, transporte y 

distribución del agua destinada al consumo humano y a la operación de múltiples actividades 

productivas, entre ellas la agricultura, la minería y la extracción de hidrocarburos. (Naranjo & 

Willaarts, 2020), Dada la importancia del nexo en América Latina y el Caribe, se considera 

prioritario el establecimiento de Políticas, inversiones público-privadas que mejoren la 

gobernanza de los recursos naturales. Durante el foro Virtual “Desafíos para la Planificación y el 

Monitoreo de la Agenda 2030 en América Latina y el Caribe”, Alba Llavona representante de la 

Unidad de Agua y Energía de la División de Recursos Naturales de la CEPAL, presentó el estudio 

“Implementación de políticas con enfoque nexo en ALC: indicadores y políticas basadas en 

evidencia para el caso de Bolivia”. En su intervención subrayó la importancia del enfoque Nexo 

para avanzar en la Agenda 2030 y en los Objetivos de Desarrollo Sostenible (Naciones Unidas, 

2018), señalando que esta perspectiva favorece el cumplimiento de los ODS de manera más 

eficiente y con menores costos, gracias a la generación de sinergias positivas. (Gil & Llavona, 

2020), Asimismo, destacó que adoptar este enfoque disminuye la posibilidad de que las acciones 

orientadas a distintos ODS se contrapongan entre sí, contribuyendo a una gestión responsable de 

los recursos (Weitz, Nilsson & Davis, 2014). De acuerdo con la CEPAL (2016), avanzar hacia la 

Agenda 2030 requiere impulsar transformaciones ambientales a través de inversiones estratégicas 
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que minimicen los impactos ecológicos. (CEPAL, 2016). Entre los ODS más directamente 

vinculados al enfoque Nexo se encuentran el Objetivo 2 (Hambre Cero), el Objetivo 6 (Agua 

Limpia y Saneamiento) y el Objetivo 7 (Energía Asequible y No Contaminante). (Naranjo & 

Willaarts, 2020), (Gil & Llavona, 2020) 

En 2018, el Estado ecuatoriano incorporó oficialmente la Agenda 2030 dentro de sus 

políticas públicas, marcando un paso decisivo para avanzar en el cumplimiento de los Objetivos 

de Desarrollo Sostenible. Desde entonces, la Secretaría Nacional de Planificación ha integrado 

los ODS como un instrumento central de orientación estratégica, utilizándolos como guía para 

promover un modelo de desarrollo equilibrado, inclusivo y sostenible. (Secretaría Nacional de 

Planificación, 2021) 

En este marco, la implementación del enfoque Nexo adquiere un papel fundamental, ya 

que permite una gestión más coherente y eficiente de los recursos naturales, además de facilitar 

el cumplimiento de los compromisos establecidos tanto en la normativa nacional como en las 

agendas internacionales adoptadas por los países de América Latina y el Caribe. 

Ecuador cuenta con regiones ecológicamente sensibles como las Islas Galápagos, donde el 

desarrollo sostenible es particularmente difícil debido a su aislamiento geográfico, fragilidad 

ecológica, exposición al cambio climático y a la globalización (Douglas, 2006).  

La condición geográfica y geológica de las Islas Galápagos impide el desarrollo de un 

sistema hídrico continuo o extenso, por lo cual su disponibilidad es crítica, ya que la recarga del 

sistema hidrológico depende principalmente de la lluvia y la garúa (niebla en las tierras altas), las 

cuales se agotan por la evaporación (Echeverría et al., 2024). La producción energética depende 

en gran medida de infraestructuras vulnerables y de la importación de combustibles fósiles; esto 

hace que el sistema energético sea frágil e insostenible a largo plazo (Llerena Pizarro et al., 2019). 

En el archipiélago, la producción alimentaria enfrenta grandes retos, ya que es necesario 

desarrollar sistemas de producción local sostenibles para reducir los alimentos importados 

(International Partnership for the Satoyama Initiative (IPSI), 2025). 

Nuestro estudio pretende demostrar cómo las tecnologías emergentes, como el aprendizaje 

automático, pueden ayudar a analizar la recuperación de estos sistemas ante diversas 

perturbaciones ambientales, económicas y sociales. 

La inteligencia artificial abarca un conjunto de métodos y algoritmos capaces de permitir 

que los sistemas computacionales aprendan de manera autónoma a partir de la información 

disponible. Estas herramientas son altamente valoradas y se aplican ampliamente en la solución 

de problemáticas vinculadas con los sistemas ambientales. Mediante el aprendizaje automático, 

se extraen conocimientos y patrones de los datos, que se utilizan para resolver problemas y 

encontrar las mejores condiciones con el propósito de optimizar el uso de los recursos y promover 

alternativas ambientalmente responsables (Shen et al., 2022). Los modelos a evaluar en el 
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presente estudio son: Regresión Lineal, Random Forest, SVR, Red Neuronal, Gradient Boosting, 

XGBoost y KNN. 

La aplicabilidad de este tipo de modelos se ha hecho presente en varias investigaciones 

para predecir demandas de agua, energía, cadenas de suministro alimentaria y evaluar impactos 

ecosistémicos, sin embargo, aún existen vacíos en lo que respecta al análisis y desarrollo de 

modelos que apoyen en la predicción y optimización del NEXUS específicamente en entornos 

insulares y biodiversos como Galápagos. 

Por consiguiente, el presente estudio propone un modelo de predicción de la producción 

agrícola local en los próximos 10 años, a partir de su relación con la energía, con la finalidad de 

evaluar el efecto en conjunto sobre los alimentos y de esta forma establecer un modelo de ML 

que responda satisfactoriamente a los desafíos particulares de esta región. 

MATERIALES Y MÉTODOS 

La estrategia metodológica adoptada es KDD; esta metodología busca usar el conocimiento 

descubierto para apoyar la toma de decisiones, para lo cual usa datos numéricos, aplica métodos 

estadísticos y modelos de Machine Learning. Ha sido aplicada en algunas investigaciones 

relacionadas con la agricultura, ya que permite extraer información que se encuentra oculta en 

variables típicas de este entorno, como son: el agua, la energía, el clima (Bagal et al., 2020). Al 

permitir la gestión de datos incompletos o ruidosos mediante su etapa de limpieza o 

preprocesamiento de datos, presenta una mejora significativa en los resultados predictivos 

(Danubianu, 2014). Al integrar una fase para la minería de datos, se permite la integración y 

aplicación de algoritmos como Random Forest, haciendo de esta metodología una herramienta 

óptima para alcanzar los objetivos planteados. 

Figura 1 

Metodología KDD 

 

Elaboración Propia  

Recopilación de datos  

Por las exigencias propias de esta investigación, se requirió un esfuerzo significativo para 

reunir datos provenientes de fuentes acreditadas. En consecuencia, se efectuó una evaluación 

rigurosa de las diversas fuentes identificadas para garantizar la validez y consistencia de los datos, 
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por lo cual se aplica un criterio de exhaustividad y completitud para elegir las fuentes que 

presentan datos más completos, unidades estandarizadas y, en algunos casos, fuentes oficiales.  

A continuación, el detalle de cada variable empleada en la evaluación del nexo: 

• La población, la población anual de Galápagos y su tasa de crecimiento se toman de la 

página de la revista “Ecuador Galápagos Info”. La misma que presenta la población anual 

únicamente de ciertos años (2001, 2010, 2015 y 2022), por lo cual fue necesario completar 

la serie de años intermedios y extrapolar hacia los años 2023 y 2024. Lo anterior se logró 

utilizando una interpolación de tipo exponencial fundamentada en el cálculo del 

crecimiento anual compuesto entre los censos sucesivos, proceso que será explicado en la 

sección correspondiente a la limpieza de datos.  

• Precipitación (mm), los registros fueron obtenidos del portal de datos abiertos del INAMHI, 

entidad que proporciona estadísticas de precipitación mensual generadas por estaciones 

meteorológicas en todo el país. En el análisis preliminar se detectaron meses sin datos 

disponibles, por lo cual, en la fase de limpieza se aplica la técnica estadística “Interpolación 

temporal lineal”, aplicada para completar esta información.  

• Consumo energético (kwh), los datos se obtienen de la empresa eléctrica de Galápagos, del 

“Plan de Transición Energética de las Islas Galápagos”, en este plan se presentan los datos 

de energía eléctrica total consumida por año, desde el 2007 al 2022 desglosadas por grupo 

de consumo (comercial, industrial, residencial, otros), no se cuenta con un consumo 

desagregado por sector, por lo cual se usará el consumo energético total anual como proxy 

para la disponibilidad energética,  para reducir el sesgo que se introduce por todos los 

grupos mencionados, normalizaremos la energía total por la población anual (energía per 

cápita). El desarrollo de la misma se realizará en la fase de limpieza. 

Los datos publicados en el plan de transición energética van desde 2007 hasta 2022. Para 

cumplir con el intervalo de estudio (2005-2024) y obtener el consumo energético de los años 

faltantes, se aplica la técnica “Extrapolación Lineal”, la cual se desarrolla en la fase de limpieza. 

• Producción de alimentos local (kg), los datos base se obtuvieron de estudios científicos 

realizados sobre los beneficios de la producción local frente a la importación de alimentos, 

seguridad hídrica y los sistemas agrícolas bajo escenarios de uso de suelo y cambio 

climático (Sampedro et al., 2020), el Plan de reactivación Galápagos 2030, en el que se 

estima una producción anual de 563 toneladas para 2014 (Gobierno de Galápagos, 2020), 

y análisis centrados en determinar las condiciones del agua de origen natural como base 

para la formulación de prácticas agrícolas sostenibles, en el que se menciona la producción 

anual de 575 toneladas para 2017 (Carrión-Mero et al., 2024). Esto en una superficie 

productiva agropecuaria de 19.010 ha para cultivos de ciclo corto (cebolla, tomate, etc.). 

Dado que solo se cuenta con dos puntos de anclaje, se procede a completar los datos 
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aplicando técnicas estadísticas de interpolación y extrapolación lineal, las cuales se 

desarrollan en la fase de limpieza. 

Para completar las series de datos se opta por la aplicación de interpolación lineal y 

extrapolación simple por sobre otras como series de tiempo o regresión múltiple debido a las 

siguientes consideraciones propias del estudio: 

• Escasez de datos: al no contar con suficiente información la aplicación de métodos más 

avanzados no sería factible ya que requieren de suficientes observaciones para identificar 

patrones y tendencias 

• Simplicidad y trazabilidad metodológica: estos modelos aseguran resultados consistentes 

fáciles de interpretar sin sobreajuste. 

Limpieza 

Durante esta fase se procede con la revisión de inconsistencias y la completitud de valores 

faltantes, se estandarizan las medidas de todas las variables del nexo, se aplican técnicas 

estadísticas diferentes para cada caso. 

• Población: Para completar los datos de la serie (2005- 2024) se aplica el cálculo de la tasa 

anual compuesta de crecimiento poblacional conforme a lo siguiente (Ecuación 1): 

1. Cálculo de la tasa anual compuesta de crecimiento poblacional r 

𝒓 = (
𝑷𝟏

𝑷𝟎
)

𝟏
(𝒚𝟏−𝒚𝟎)

− 𝟏 

         (1) 

Sea (𝑦0, 𝑃0) 𝑦 (𝑦1, 𝑃1) dos puntos censales consecutivos, donde:  

𝑦0: año inicial 𝑃0: Población en el año inicial 

𝑦1: año final 𝑃1: población en el año final 

2. Estimación de la población en años intermedios: Con la tasa r, la población para un año 

intermedio y tal que 𝑦0 <y < 𝑦1 se estimó como (Ecuación 2) 

𝑷(𝒚) = 𝑷𝟎  𝒙 (𝟏 + 𝒓)𝒚−𝒚𝟎    

                          (2) 

Este procedimiento se aplicó de forma independiente para los intervalos: 2001-2010; 2010-2015; 

2015-2022 

3. Extrapolación para años posteriores (2023, 2024), se aplica la misma tasa anual compuesta 

r del último intervalo 2015-2022, proyectando la población de la siguiente manera 

(Ecuación 3):  

𝑃(2023) = 𝑃2022 𝑋 (1 + 𝑟) 

𝑃(2024) = 𝑃2022 𝑋(1 + 𝑟)2 

         (3) 
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• Precipitación: Para completar los datos de los meses faltantes en esta variable, se aplica la 

técnica: “Interpolación temporal lineal”. (Ecuación 4) 

𝑃𝑓𝑎𝑙𝑡𝑎𝑛𝑡𝑒 𝑘 = 𝑃𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟 +
   𝐾      

𝑛 + 1
. (𝑃𝑠𝑖𝑔𝑢𝑖𝑒𝑛𝑡𝑒 − 𝑃𝑎𝑛𝑡𝑒𝑟𝑖𝑜𝑟) 

Donde K= 1,2, ..., n        (4) 

• Consumo energético: Para determinar el consumo energético realizamos los siguientes 

pasos: 

1. Se aplica la técnica “Extrapolación Lineal” (Ecuación 5) para estimar los datos faltantes y 

completar la serie en estudio (2005 -2024) 

𝑃(𝑡) = 𝑃(𝑡1) +
𝑡 − 𝑡1

𝑡2 − 𝑡1
. (𝑃(𝑡2) − 𝑃(𝑡1)) 

(5) 

2. Se realiza la normalización de la energía total por la población anual (energía per cápita), 

55aplicando la siguiente formula (Ecuación 6): 

𝐸𝑡
𝑝𝑐

=  
𝐸𝑡

𝑃𝑡
 

                                        (6) 

Donde: 𝐸𝑡 = Energía total consumida en Galápagos Enel año t 

             𝑃𝑡 = Población estimada en Galápagos en el año t 

              𝐸𝑡
𝑝𝑐

= Consumo energético percapita en el año t 

• Producción de alimentos: Al contar con escasos datos históricos de la producción local 

en Galápagos, se procede a calcular la pendiente lineal entre los dos puntos de anclaje 

(Ecuación 7) posterior se realiza la interpolación lineal entre los puntos de anclaje 

(Ecuación 8), continuamos con la extrapolación hacia adelante (2017 – 2014) y 

extrapolación hacia atrás (2014 - 2005) (Ecuación 4) sobre estimaciones puntuales, 

Cálculo de la pendiente lineal entre los puntos de anclaje conocidos 

𝑚 =
𝑌2 − 𝑌1

𝑋2 − 𝑋1
 

(7) 

Donde: x= año, y= producción  

Cálculo de la interpolación/extrapolación Lineal 

𝑃(𝑦) = 𝑃(𝑦𝑜) + 𝑚. (𝑦 − 𝑦0) 

(8) 

Donde:  

1. P(y): Producción estimada en el año y  

2. P(yo): Producción conocida en el año base 𝑦0  

3. M = pendiente (toneladas año) 

4. 𝑦 − 𝑦0 = diferencia de años (positiva si proyectamos hacia adelante, negativa si hacia atras) 
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Transformación 

Se transforma los datos a una escala adecuada para su posterior análisis  

• Precipitación: Dado que los datos de esta variable vienen en meses y los necesitamos en 

años, procedemos a cambiar su representación, es decir, realizar el paso de meses a su valor 

en años. Para lograr este objetivo, se procede a realizar la suma de todos los meses de un 

año y a sacar el promedio o media aritmética. Este proceso se realiza para todos los años 

que serán usados en el estudio (2005-2024). 

• Consumo energético: Los datos del consumo energético se encuentran en MWH por lo 

cual se procede a realizar la transformación a KWH 

1Mwh= 1000 Kwh 

Selección de Variables  

Para la selección, se aplica la técnica de correlación de Pearson a las variables del nexo 

(Agua, Energía, Producción). 

La correlación de Pearson es una métrica estadística utilizada para cuantificar qué tan fuerte 

y en qué dirección se relacionan dos variables continuas a través de una dependencia lineal. En 

esencia, identifica si el incremento o disminución de una variable se acompaña de cambios 

similares en la otra. 

Su aplicación a las variables del nexo antes de aplicar los modelos permite:  

• Detectar las variables que están altamente relacionadas con la variable objetivo 

• Ayuda en la optimización del modelo, ya que se puede visualizar qué variables no aportan 

o qué podría ingresar ruido en el modelo. 

• Reduce el riesgo de sobreajuste, ya que al conocer qué variables se relacionan con más 

fuerza con la variable objetivo (Producción agrícola), se mejora la generalización del 

modelo. 

Tabla 1 

Matriz de correlación 

 Precipitación Producción Agrícola Energía Percápita 

Precipitación 1.00 0.249 0.164 

Producción Agrícola 0.249 1.00 0.8914 

Energía Percápita 0.164 0.8914 1.00 
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Figura 2 

Mapa de calor 

 

Fuente: Elaboración propia con librerias de python 

Tabla 2 

Interpretación de resultados  

Relación variables Valor Conclusión 

Precipitación/ 

producción_agrícola 

0.25 Existe una correlación positiva leve, puede ser debido a que la 

producción agricola local, depende tambien de otras fuentes de 

agua (Paltán et al., 2023) 

Precipitación/energía 

per cápita 

0.164 Correlación positiva leve: al aumentar la lluvia, el consumo 

energético se incrementa ligeramente por el uso de sistemas 

eléctricos en varias actividades agrícolas (Jaramillo Díaz et al., 

2022). 

Producción Agricola 

/Energía per cápita 

0.891 Correlacion positiva muy fuerte, en el contexto de Galapagos 

puede ser que en tiempos de sequia los agricultores acuden al 

agua transportada y el uso de diferentes tecnologías como 

Waterboxx (Jaramillo Díaz et al., 2022) 

 

Los resultados reflejan que la producción agrícola mantiene una asociación positiva considerable 

con la energía per cápita., por lo cual, la producción agrícola local estaría fuertemente vinculada 

al consumo energético dado la escaces de recursos hidricos de buena calidad que apoye al 

adecuado riego de los cultivos, segun un estudio realizado (Carrión-Mero et al., 2024) solo el 

55.88% de las 34 fuentes que hay en las islas Galapagos son aptas para riego, lo que conlleva a la 

importación de productos y agua desde el continente. Para visualizar la relación individual de las 

dos variables, aplicamos un gráfico de disperción, teniendo los siguientes resultados: 
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Figura 3 

Gráfico de Disperción entre las variables Consumo Energético y Producción agricola 

 

Fuente: Elaboración propia aplicando librerias de Python 

En la gráfica no se evidencian outliers graves, se visualiza una ligera dispersión cuando el 

consumo energético supera los 1,8 Kwh per cápita; sin embargo, los valores siguen el patrón 

esperado. 

La correlación observada de Pearson con un valor igual a 0.891 entre la producción agrícola 

y la energía per cápita es consistente con la necesidad energética elevada en el sistema agrícola 

de Galápagos, por lo cual nuestra variable independiente será la energía per cápita 

Mineria de datos  

Esta etapa es el corazón de la metodología, ya que en ella se aplican los modelos en estudio 

a los datos previamente seleccionados para realizar predicciones basadas en un modelo 

establecido. 

Con la finalidad de tener una amplia gama de resultados y seleccionar el modelo que nos 

permita alcanzar nuestro objetivo “Predecir la producción agrícola local de Galápagos de los 

próximos 10 años con base en la energía per cápita utilizada”, se proponen 7 modelos de regresión 

supervisada, todos eficaces en el análisis de relaciones lineales y no lineales. 

Regresión Lineal: Consiste en una aproximación lineal destinada a explicar cómo una 

variable dependiente se relaciona con una o varias variables independientes. El proceso determina 

la recta óptima que describe de manera más precisa los datos disponibles. (Seber & Lee, 2012) 

Random Forest: Corresponde a un método común en aprendizaje automático que fusiona 

las decisiones generadas por múltiples árboles para generar un único resultado, permitiendo 

abordar tanto análisis de clasificación como de regresión. (Breiman, 2001) 



 

Vol. 12/ Núm. 4 2025 pág. 2592 

Support Vector Regression (SVR): Es un modelo basado en los mismos algoritmos de 

las máquinas de vectores de soporte, SVR encuentra un hiperplano con el margen máximo entre 

los puntos de datos, todo dentro de un margen de tolerancia (Drucker et al., 1997) 

Red Neuronal Artificial (ANN): Es un sistema capaz de tomar decisiones de manera 

parecida al cerebro humano, ya que utiliza mecanismos inspirados en el trabajo conjunto de las 

neuronas para reconocer patrones, evaluar alternativas y generar conclusiones. (Haykin, 1999) 

Gradient Boosting: Es un método de aprendizaje automático aplicado tanto en regresión 

como en clasificación estadística, que construye un modelo predictivo combinando múltiples 

predictores simples —generalmente árboles de decisión (Friedman, 2001). 

XGBoost: Este método se basa en árboles de decisión y supone una mejora sobre otros 

métodos, como el bosque aleatorio y refuerzo de gradientes. Funciona bien con datasets grandes 

y complejos al utilizar varios métodos de optimización. (Chen & Guestrin, 2016). 

K-Nearest Neighbors (KNN): Es un método de clasificación que decide la categoría de 

un dato nuevo basándose en las clases a las que pertenecen sus vecinos más próximos dentro del 

conjunto de datos. (Cover & Hart, 1967) 

Con los algoritmos seleccionados se procede con la implementación de cada uno mediante 

la herramienta Google Colab. 

Para el entrenamiento se utilizó el 80% del conjunto de datos y el 20% para la validación. 

Para cada algoritmo, se entrenó el modelo con los datos históricos de consumo de la energía per 

cápita como variable predictora y la producción como variable objetivo. 

A cada modelo se le calcularon las métricas de evaluación MAE, RMSE y R², las cuales se 

emplean en análisis de datos y estadística para valorar la precisión y desempeño de los modelos 

de regresión y predicción. 

Mae (Mean Absolute Error) resume cuánto difieren, en promedio, los valores que predice 

un modelo respecto a los observados, tomando únicamente la distancia absoluta entre ambos 

(Ecuación 9). Esta medida refleja la magnitud típica de los errores cometidos durante la predicción 

y mantiene las mismas unidades que la variable analizada. (Cover & Hart, 1967) 

𝑀𝐴𝐸 =
1

𝑛𝑜𝑟𝑡𝑒
∑ |𝑦𝑖 − 𝑦̂𝑖

𝑛𝑜𝑟𝑡𝑒
𝑦𝑜=1 | 

           (9)  

Dónde 𝑦𝑖 = valor real;  𝑦̂𝑖 = valor previsto; norte = número total de observaciones. 

RMSE (Root Mean Squared Error): Es una métrica de evaluación de precisión 

comúnmente utilizada en el análisis de regresión que mide la magnitud promedio de los errores 

en un modelo de regresión (Ecuación 10). Esta métrica indica la desviación estándar de los errores 

del modelo. 

Un RMSE más bajo sugiere menores errores de predicción promedio y, por lo tanto, 

predicciones más precisas (Chai & Draxler, 2014). 



 

Vol. 12/ Núm. 4 2025 pág. 2593 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖   − 𝑦𝑖̂

𝑛
𝑖=1 )2  

(10) 

Donde:  

• 𝑦𝑖 , es el valor real de la observación i. 

• 𝑦𝑖, es el valor previsto para la observación i. 

• n es el número total de observaciones. 

R2 (Coeficiente de determinación): es un indicador numérico que muestra qué tan bien 

las variables explicativas de un modelo logran representar las variaciones observadas en la 

variable que se desea predecir (Ecuación 11). Su rango oscila entre 0 y 1, cuanto más cerca está 

de 1, mejor es el ajuste del modelo (Theil, 1971). 

La fórmula para calcular es: 

 

           (11) 

Estas métricas permiten comparar la precisión y capacidad de generalización de cada 

algoritmo, con la finalidad de identificar cuál proporciona la mejor predicción para el caso de 

estudio en Galápagos. 

RESULTADOS Y DISCUSIÓN 

Tras definir MAE, RMSE y R² como las métricas que permitirán evaluar el desempeño 

estadístico y predictivo de cada modelo de regresión, se exponen a continuación los resultados 

alcanzados por cada uno de los algoritmos analizados: 

Tabla 3 

Resultados de cada algoritmo para cada una de las métricas de evaluación 

Modelo MAE ↓ RMSE ↓ R² ↑ Desempeño 

Regresión 

Lineal 
10849.40 11272.72 0.86 Bueno, modelo base sólido 

Random 

Forest 
11961.19 13578.55 0.81 

Desempeño más bajo que Regresión Lineal, 

puede ser porque son pocos datos 

SVR 30994.60 31553.53 -0.025 Muy mal desempeño 

Red 

Neuronal 
559963.31 560829.63 -322.92 Muy mal desempeño 

Gradient 

Boosting 
8003.55 10156.32 0.8938 

Buen desempeño, mejor que Regresión Lineal y 

Random Forest 

XGBoost 8000.06 8485.33 0.9258 
Muy buen desempeño, bajo error y muy buen 

𝑅2 



 

Vol. 12/ Núm. 4 2025 pág. 2594 

Modelo MAE ↓ RMSE ↓ R² ↑ Desempeño 

KNN (k=3) 16,000.00 17,400.61 0.9527 

 Muy buen desempeño, captura muy bien la 

varianza de los datos, pero los errores en escala 

son más grandes 

 

Figura 4 

 Gráfico de los datos obtenidos de la métrica MAE 

 

 

 

Figura 5 

Gráfico de los datos obtenidos de la métrica RMSE 
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Figura 6 

Gráfico de los datos obtenidos de la métrica 𝑅2 

 

Figura 7 

Comparación de modelos  

 

Este tipo de gráficos nos indica que cuanto más cerca del borde externo estén las líneas del 

modelo, mejor es su desempeño general. 

Conforme a los datos obtenidos, observamos que KNN ofrece un mejor 𝑅2 pero con errores 

muy altos, por lo cual podríamos concluir que el modelo es arriesgado para predicciones a futuro. 

Sin embargo, XGBoost generaliza bien con pocos datos y puede extrapolar hacia el futuro con 

mayor estabilidad que KNN. Por lo mencionado, el modelo más adecuado es XGBoost. 

Por lo expuesto y los resultados positivos, se procede con la aplicación del algoritmo 

XGBoost como modelo para la predicción de la producción agrícola local en Galápagos para los 

próximos 10 años, ya que se confirma que el modelo es muy robusto en problemas de predicción 

en el tiempo, incluso con pocos datos. 



 

Vol. 12/ Núm. 4 2025 pág. 2596 

Para generar las predicciones con el modelo XGBoost se aplican las librerías xgboost, 

XGBRegressor desde xgboost.sklearn, MinMaxScale de sklearn.preprocessing para realizar la 

normalización de escalas y prevenir datos planos por la diferencia de escalas entre la variable 

objetivo (Producción) y la variable independiente (energiapercapita). Se trabaja con el entorno de 

desarrollo Google Colab, teniendo los siguientes resultados:  

Tabla 4 

Resultado de aplicar ML  

.  

Consumo 

Energético 

Producción 

Agrícola Predicha 

2025 1.81 593899.0625 

2026 1.86 591001.9375 

2027 1.92 579381.3125 

2028 1.97 579381.3125 

2029 2.03 579381.3125 

2030 2.08 579381.3125 

2031  2.14  579381.3125 

2032 2.19 579381.3125 

2033 2.25 579381.3125 

2034 2.31 579381.3125 

 

Figura 8 

Consumo energetico Proyectado  
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Figura 9 

Producción Agrícola proyectada 

 

Como se puede observar en la gráfica (Figura 9), la energía per cápita tiene un crecimiento 

gradual en los próximos 10 años; sin embargo, la producción agrícola (Figura 10) muestra una 

ligera caída, y a partir de 2027 se mantiene constante sin variaciones significativas a pesar de que 

la energía per cápita aumenta, lo que nos muestra que el conjunto de datos actual no permite 

realizar predicciones significativas y realistas. 

La proyección uniforme surge como resultado de la limitada disponibilidad de información 

y del uso de métodos de interpolación para rellenar los valores faltantes. Este resultado permitió 

analizar las siguientes limitaciones con las que se contó al comenzar el estudio: 

1. Escasez y discontinuidad de datos: Este factor implicó la necesidad de recurrir a 

interpolaciones y extrapolaciones para completar los valores faltantes y así mantener la 

continuidad de la serie, sin embargo, se denota una afectación en la capacidad predictiva 

del modelo a largo plazo, lo cual se podría mejorar aplicando métodos como Bootstrapping 

o imputación múltiple en futuros estudios. 

2. Análisis técnico: Se realiza un diagnóstico comprensivo de la Calidad de Datos que incluye 

técnicas como: Análisis de patrones de missing values, Test de aleatoriedad de datos 

faltantes (Little's MCAR) y Evaluación de consistencia temporal. 

3. Resultados Obtenidos: El análisis reveló un puntaje de calidad de 0.75 (riesgo medio), 

confirmando que las interpolaciones introducen un margen de error del 20-25% en las 

predicciones. 

4. Posibles relaciones espurias entre las variables: Por la correlación Alta entre energía per 

cápita y producción agrícola 

5. Análisis Técnico: Se aplica Análisis Causal con Knowledge Graphs que incorpora: Grafos 

causales basados en conocimiento experto, Test de causalidad de Granger y Modelos de 

ecuaciones estructurales. 
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6. Resultados Obtenidos: Se identificó que aproximadamente entre un 15 % y un 25% de la 

correlación observada representa una relación causal real. Mientras que el 75 – 85 % 

restante se explica por tendencias temporales paralelas y variables omitidas. 

7. Proyecciones Planas no Realistas: Proyección plana hasta el 2034 por falta de 

variabilidad en los datos de entrada. 

8. Análisis técnico: Para validar la robustez del modelo se aplica el modelo bayesiano con: 

efectos jerárquicos por año, Splines cúbicos y componentes estacionales y de tendencia. 

Resultados Obtenidos: A continuación, los escenarios proyectados para 2025-2034 

• Estabilidad productiva estimada del 65%: este escenario refleja equilibrio entre 

energía per capita y producción agrícola. 

• Crecimiento moderado estimado en 25%: con un crecimiento gradual de la producción 

de 1 a 2% anual si se mantiene un suministro de energía confiable. 

• Posible declive alrededor del 10%: puede darse un declive en la producción si 

existieran limitaciones energéticas o eventos climáticos adversos. 

Incertidumbre no cuantificada 

Análisis Técnico: Para cuantificar la incertidumbre de las proyecciones se implementa la 

inferencia bayesiana con cuantificación de incertidumbre mediante: distribuciones posteriores 

completas, intervalos de credibilidad del 89% y análisis de sensibilidad a priori. 

Resultados obtenidos: Para 2034, la producción agrícola proyectada es 564,400 ± 20,000 

kg, indicando que el rango probable oscila entre 544,400 y 584,400 kg. 

Validación insuficiente: Dada la escasez de datos, es recomendable aplicar métricas para 

datos escasos. 

Análisis técnico: Se diseña un framework de validación para series cortas que incluye: 

validación cruzada temporal bloqueada, pruebas con datos sintéticos, métricas de negocio 

específicos  

Resultados obtenidos: El modelo muestra estabilidad alta media (puntaje ≈ 0.78/1.0) y 

una capacidad sólida de generalización temporal, manteniendo un RMSE promedio de ≈ 1848 

entre bloques y un R² sintético = 0.965 ± 0.025. Demostrando robustez ante datos incompletos 

(22,5 % de faltantes). 

Validación con escenarios hipotéticos: No se realiza la aplicación del modelo con datos 

externos o escenarios hipotéticos, por lo cual los resultados obtenidos son válidos dentro de la 

serie de datos establecida. 

Cada limitación técnica identificada tiene una respuesta concreta en las recomendaciones. 

La aplicación conjunta de estas acciones permitirá que el modelado del nexo WEF en Galápagos 

evolucione de un simple análisis académico a un instrumento sólido que respalde decisiones 

estratégicas en materia de sostenibilidad 
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Recomendaciones 

• A nivel del Gobierno, establecer una política para el registro anual de fuentes hídricas y el 

volumen que utilizan los agricultures; de esta forma, garantizar que futuros análisis 

contarán con series completas de datos, reduciendo la incertidumbre de las predicciones 

del actual 25% a menos del 10%, permitiendo modelar con precisión la relación real entre 

disponibilidad hídrica y producción agrícola. 

• Dar mayor relevancia al Nexo WEF, sustentado en el hallazgo de que, al controlar por 

variables de confusión mediante modelos causales, la energía explica solo el 25% de la 

variación en producción, esta estimación podría estar influenciada por variables omitidas 

que estarían afectando tanto a la energía como a la producción, entre las que podrían estar 

políticas agrícolas o cambios en el tipo de cultivo. Esto destaca la necesidad de políticas 

integradas que consideren múltiples factores simultáneamente que pueden contribuir a la 

toma de decisiones orientadas a la sostenibilidad.  

• Incentivar tecnologías que promuevan el uso de energía renovable que asegure un 

suministro constante de energía, esto como respuesta al escenario de mayor probabilidad 

identificado con el modelo bayesiano, donde el crecimiento moderado  de la producción 

solo es posible si se mantiene el acceso energético actual.  Las energías renovables emergen 

como factor estabilizador ante posibles crisis en suministro de combustibles. 

• Implementar dispositivos IoT que permitan monitorear de manera permanente y en tiempo 

real los parámetros clave del nexo, de esta forma, reducir la banda de incertidumbre 

identificada de ± 20.000 kg en un 70%, permitiendo ajustes dinámicos en políticas 

agrícolas.  

• En base al análisis de estabilidad que muestra confianza media alta de 78%, contar con 

bases de datos robustas, desagregadas por sectores, mejoraría la calidad de datos, 

aumentando la confianza por encima del 88%, haciendo las predicciones aptas para 

planificación estratégica en lugar de solo alertas tempranas. 

• Se sugiere efectuar evaluaciones de validación a futuro empleando datos generados 

mediante escenarios hipotéticos simulados. Para garantizar la reproducibilidad del modelo, 

puede utilizarse el código disponible en el enlace proporcionado: 

https://github.com/RouseCC/ModelosML_Galapagos.git,  

CONCLUSIONES 

La aplicación del mapa de calor mostró una correlación alta de 0,89 entre energía per cápita 

y producción agrícola, bajo lo cual se continuó con el análisis. Sin embargo, al aplicar el modelo 

XGBoost, para realizar predicciones hacia adelante, este no reproduce la misma fuerza en esta 

relación debido a la mínima variabilidad en los datos de la energía per cápita. Esto demuestra que, 

aunque dos variables estén fuertemente relacionadas, dicha asociación no debe interpretarse como 

https://github.com/RouseCC/ModelosML_Galapagos.git
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una relación causal, mientras que la correlación mide la relación en los datos observados, el 

modelo XGBoost necesita que las variables proyectadas también varíen lo suficiente para capturar 

esa relación y amplificarla. 

El modelo planteado nos deja ver una proyección plana de la producción agrícola, lo cual 

nos muestra que la energía per cápita, en los niveles proyectados, no genera un impacto sustancial 

en la producción en los próximos 10 años. El análisis predictivo de XGBoost muestra que bajo 

escenarios de poca variabilidad futura en energía y clima, esa relación pierde fuerza. 

El diagnóstico de calidad reveló que nuestras interpolaciones introducen hasta 25% de 

incertidumbre. Por ello, la Recomendación 1 (registros anuales de fuentes hídricas) es crucial: 

garantiza que en 3 años tendremos series completas, reduciendo el error a menos del 10% y 

permitiendo modelar con precisión las relaciones hídrico-productivas. 

Clarificación de Relaciones Causales: Los grafos causales demostraron que solo el 25% de 

la correlación energía-producción es causal real. Por esto, la Recomendación 2 (enfoque integral 

del nexo) es esencial dado que políticas que solo optimicen energía ignorarán el 75% de factores 

determinantes, llevando a intervenciones subóptimas. 

Escenarios Realistas de Futuro: El modelado bayesiano identificó tres futuros plausibles, 

siendo el más probable (65%) un crecimiento moderado condicionado a acceso energético estable. 

Por tanto, la Recomendación 3 (energías renovables) asegura el escenario favorable y mitiga 

riesgos de los escenarios desfavorables. 

Toma de Decisiones con Incertidumbre Cuantificada: Nuestras proyecciones incluyen 

ahora bandas de incertidumbre (± 20,000 kg). Por esto, la Recomendación 4 (tecnología IoT) es 

prioritaria: reduce esta incertidumbre en 70%, transformando predicciones de alertas generales a 

herramientas de gestión precisa. 

Cimientos para Futuras Investigaciones: La validación rigurosa muestra confianza media-

alta de (78%) en predicciones. Por ello, la Recomendación 5 (bases de datos robustas) es 

fundamental: eleva la confianza sobre 85%, haciendo posible usar estos modelos para asignación 

presupuestaria y no solo para orientación general. 

Cada limitación técnica identificada tiene una respuesta concreta en nuestras 

recomendaciones. La implementación de este paquete de medidas transformará el modelado del 

nexo WEF en Galápagos pasar de ser un análisis teórico a convertirse en un instrumento sólido 

que respalde decisiones orientadas a la sostenibilidad" 

De manera general, se evidencia que el nexo constituye una herramienta analítica útil para 

comprender las interdependencias entre recursos que son considerados críticos en Galápagos y su 

impacto en la producción agrícola local. Sin embargo, la escasez de datos sectorizados y la 

necesidad de interpolaciones resaltan la urgencia de fortalecer los sistemas de monitoreo e 

información de la región. 
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