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RESUMEN

En una época marcada por la creciente interconexion global y por los impactos evidentes del
cambio climatico, el enfoque del nexo WEF (agua-energia-alimentos) se posiciona como un
instrumento fundamental para evaluar y anticipar escenarios orientados a la sostenibilidad. Este
enfoque se articula directamente con la Agenda 2030 y sus Objetivos de Desarrollo Sostenible.
El estudio analiza como el uso de técnicas de aprendizaje automatico y modelos de machine
learning puede contribuir a mejorar y gestionar de forma eficiente las relaciones entre estos
sistemas y anticipar escenarios futuros a partir del analisis del nexo. La aplicacion de KDD como
metodologia de implementacion permitio la recopilacion y limpieza de los datos, fases en las que
se evidenciaron vacios en las series. Para completar las series de datos de la produccion y energia,
se aplican interpolaciones y extrapolaciones lineales. Se validan 7 modelos de regresion
supervisada (Regresion Lineal, Random Forest, SVR, Red Neuronal Artificial, Gradient
Boosting, XGBoost, KNN). De los modelos evaluados, XGBoost presenta el mejor desempefio y
bajo error R? = 0.92. No obstante, las estimaciones a diez afios muestran que la produccién
agricola tiende a mantenerse practicamente sin variaciones, esto se atribuye a la escasez de datos
y a su poca variabilidad, lo que evidencio 5 limitantes, las mismas que al ser tratadas de manera

técnica le dotan al modelo una alta estabilidad (R? = 0.965 £ 0.025), y una baja incertidumbre de
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+ 20.000 kg, reforzando su confiabilidad como herramienta de alerta temprana en el sistema

agricola de Galapagos.
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ABSTRACT
In an era marked by increasing global interconnectedness and the evident impacts of climate
change, the WEF nexus approach (water-energy-food) is positioned as a fundamental tool for
assessing and anticipating sustainability-oriented scenarios. This approach is directly aligned with
the 2030 Agenda and its Sustainable Development Goals. The study analyzes how the use of
machine learning techniques and models can contribute to improving and efficiently managing
the relationships between these systems and anticipating future scenarios based on nexus analysis.
The application of KDD as the implementation methodology allowed for data collection and
cleaning, phases in which gaps in the data series became evident. To complete the production and
energy data series, linear interpolations and extrapolations were applied. Seven supervised
regression models were validated (Linear Regression, Random Forest, SVR, Artificial Neural
Network, Gradient Boosting, XGBoost, KNN). Of the models evaluated, XGBoost presents the
best performance and low error RN(2 ) = 0.92. However, ten-year estimates show that agricultural
production tends to remain practically unchanged. This is attributed to the scarcity of data and its
low variability, which revealed 5 limitations. When these limitations are addressed technically,
they give the model high stability (R? = 0.965 £+ 0.025) and a low uncertainty of = 20,000 kg,

reinforcing its reliability as an early warning tool in the Galapagos agricultural system
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INTRODUCCION

En un escenario orientado a la sostenibilidad y marcado por crisis en los recursos hidricos,
energéticos y alimentarios, la medicion del nexo agua-energia-alimentos (WEF) en una region
especifica cobra especial relevancia debido a la vulnerabilidad de cada sector (Sanchez-Zarco et
al., 2021). La interaccion entre el nexo WEF y los servicios ecosistémicos urbanos (SEU) genera
un impacto significativo, por lo que resulta esencial estudiar su correlacion y efectos en la
poblacion (Ding et al., 2023)

El enfoque del nexo agua—energia—alimentos (WEF) aborda la forma en que estos tres
sistemas se relacionan e influyen entre si de manera dinamica. Su interaccion no solo es
inseparable, sino que ademas varia de acuerdo con el espacio y el tiempo, lo que evidencia que la
administracion sectorial tradicional resulta limitada para enfrentar los problemas globales
actuales. Entre estos desafios se incluyen el cambio climatico, la reduccién de recursos
disponibles, el deterioro de los ecosistemas y la creciente preocupacion por la seguridad
alimentaria. (Simpson & Jewitt, 2019).

En América Latina y el Caribe, una proporcion significativa de las actividades econdmicas
se sustenta en la explotacion y uso intensivo de los recursos naturales. En este marco, el sector
agricola depende del recurso hidrico para garantizar el riego y el adecuado desarrollo de los
cultivos. De manera paralela, el sector energético requiere agua tanto para la generacion
hidroeléctrica como para los procesos de refrigeracion asociados a diversas tecnologias de
produccion. Asimismo, la energia constituye un insumo esencial para la captacion, transporte y
distribucién del agua destinada al consumo humano y a la operacion de multiples actividades
productivas, entre ellas la agricultura, la mineria y la extraccion de hidrocarburos. (Naranjo &
Willaarts, 2020), Dada la importancia del nexo en América Latina y el Caribe, se considera
prioritario el establecimiento de Politicas, inversiones publico-privadas que mejoren la
gobernanza de los recursos naturales. Durante el foro Virtual “Desafios para la Planificacion y el
Monitoreo de la Agenda 2030 en América Latina y el Caribe”, Alba Llavona representante de la
Unidad de Aguay Energia de la Division de Recursos Naturales de la CEPAL, presento el estudio
“Implementacion de politicas con enfoque nexo en ALC: indicadores y politicas basadas en
evidencia para el caso de Bolivia”. En su intervencion subray6 la importancia del enfoque Nexo
para avanzar en la Agenda 2030 y en los Objetivos de Desarrollo Sostenible (Naciones Unidas,
2018), sefialando que esta perspectiva favorece el cumplimiento de los ODS de manera maés
eficiente y con menores costos, gracias a la generacion de sinergias positivas. (Gil & Llavona,
2020), Asimismo, destacod que adoptar este enfoque disminuye la posibilidad de que las acciones
orientadas a distintos ODS se contrapongan entre si, contribuyendo a una gestion responsable de
los recursos (Weitz, Nilsson & Davis, 2014). De acuerdo con la CEPAL (2016), avanzar hacia la

Agenda 2030 requiere impulsar transformaciones ambientales a través de inversiones estratégicas
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que minimicen los impactos ecoldgicos. (CEPAL, 2016). Entre los ODS mas directamente
vinculados al enfoque Nexo se encuentran el Objetivo 2 (Hambre Cero), el Objetivo 6 (Agua
Limpia y Saneamiento) y el Objetivo 7 (Energia Asequible y No Contaminante). (Naranjo &
Willaarts, 2020), (Gil & Llavona, 2020)

En 2018, el Estado ecuatoriano incorpord oficialmente la Agenda 2030 dentro de sus
politicas publicas, marcando un paso decisivo para avanzar en el cumplimiento de los Objetivos
de Desarrollo Sostenible. Desde entonces, la Secretaria Nacional de Planificacion ha integrado
los ODS como un instrumento central de orientacion estratégica, utilizdndolos como guia para
promover un modelo de desarrollo equilibrado, inclusivo y sostenible. (Secretaria Nacional de
Planificacion, 2021)

En este marco, la implementacion del enfoque Nexo adquiere un papel fundamental, ya
que permite una gestion mas coherente y eficiente de los recursos naturales, ademas de facilitar
el cumplimiento de los compromisos establecidos tanto en la normativa nacional como en las
agendas internacionales adoptadas por los paises de América Latina y el Caribe.

Ecuador cuenta con regiones ecologicamente sensibles como las Islas Galapagos, donde el
desarrollo sostenible es particularmente dificil debido a su aislamiento geografico, fragilidad
ecoldgica, exposicion al cambio climatico y a la globalizacion (Douglas, 2006).

La condicion geografica y geoldgica de las Islas Galapagos impide el desarrollo de un
sistema hidrico continuo o extenso, por lo cual su disponibilidad es critica, ya que la recarga del
sistema hidrolégico depende principalmente de la lluvia y la gartia (niebla en las tierras altas), las
cuales se agotan por la evaporacion (Echeverria et al., 2024). La produccion energética depende
en gran medida de infraestructuras vulnerables y de la importacion de combustibles fosiles; esto
hace que el sistema energético sea fragil e insostenible a largo plazo (Llerena Pizarro et al., 2019).
En el archipiélago, la produccion alimentaria enfrenta grandes retos, ya que es necesario
desarrollar sistemas de produccion local sostenibles para reducir los alimentos importados
(International Partnership for the Satoyama Initiative (IPSI), 2025).

Nuestro estudio pretende demostrar como las tecnologias emergentes, como el aprendizaje
automatico, pueden ayudar a analizar la recuperacion de estos sistemas ante diversas
perturbaciones ambientales, econdmicas y sociales.

La inteligencia artificial abarca un conjunto de métodos y algoritmos capaces de permitir
que los sistemas computacionales aprendan de manera auténoma a partir de la informacién
disponible. Estas herramientas son altamente valoradas y se aplican ampliamente en la solucion
de problematicas vinculadas con los sistemas ambientales. Mediante el aprendizaje automatico,
se extraen conocimientos y patrones de los datos, que se utilizan para resolver problemas y
encontrar las mejores condiciones con el proposito de optimizar el uso de los recursos y promover

alternativas ambientalmente responsables (Shen et al., 2022). Los modelos a evaluar en el
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presente estudio son: Regresion Lineal, Random Forest, SVR, Red Neuronal, Gradient Boosting,
XGBoost y KNN.

La aplicabilidad de este tipo de modelos se ha hecho presente en varias investigaciones
para predecir demandas de agua, energia, cadenas de suministro alimentaria y evaluar impactos
ecosistémicos, sin embargo, alin existen vacios en lo que respecta al andlisis y desarrollo de
modelos que apoyen en la prediccion y optimizacion del NEXUS especificamente en entornos
insulares y biodiversos como Galapagos.

Por consiguiente, el presente estudio propone un modelo de prediccion de la produccion
agricola local en los proximos 10 afios, a partir de su relacion con la energia, con la finalidad de
evaluar el efecto en conjunto sobre los alimentos y de esta forma establecer un modelo de ML
que responda satisfactoriamente a los desafios particulares de esta region.

MATERIALES Y METODOS

La estrategia metodologica adoptada es KDD; esta metodologia busca usar el conocimiento
descubierto para apoyar la toma de decisiones, para lo cual usa datos numéricos, aplica métodos
estadisticos y modelos de Machine Learning. Ha sido aplicada en algunas investigaciones
relacionadas con la agricultura, ya que permite extraer informacién que se encuentra oculta en
variables tipicas de este entorno, como son: el agua, la energia, el clima (Bagal et al., 2020). Al
permitir la gestion de datos incompletos o ruidosos mediante su etapa de limpieza o
preprocesamiento de datos, presenta una mejora significativa en los resultados predictivos
(Danubianu, 2014). Al integrar una fase para la mineria de datos, se permite la integracion y
aplicacion de algoritmos como Random Forest, haciendo de esta metodologia una herramienta
optima para alcanzar los objetivos planteados.

Figura 1
Metodologia KDD

CONOCIMIENTO
¥ Recopilacién
de Datos

Modelos/Patrones

Elaboracion Propia

Recopilacion de datos
Por las exigencias propias de esta investigacion, se requirié un esfuerzo significativo para
reunir datos provenientes de fuentes acreditadas. En consecuencia, se efectué una evaluacion

rigurosa de las diversas fuentes identificadas para garantizar la validez y consistencia de los datos,
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por lo cual se aplica un criterio de exhaustividad y completitud para elegir las fuentes que

presentan datos mas completos, unidades estandarizadas y, en algunos casos, fuentes oficiales.

A continuacion, el detalle de cada variable empleada en la evaluacion del nexo:

. La poblacion, la poblacion anual de Galdpagos y su tasa de crecimiento se toman de la
pagina de la revista “Ecuador Galdpagos Info”. La misma que presenta la poblacién anual
unicamente de ciertos afios (2001, 2010, 2015 y 2022), por lo cual fue necesario completar
la serie de afos intermedios y extrapolar hacia los afios 2023 y 2024. Lo anterior se logro
utilizando una interpolacion de tipo exponencial fundamentada en el calculo del
crecimiento anual compuesto entre los censos sucesivos, proceso que sera explicado en la
seccion correspondiente a la limpieza de datos.

o Precipitacion (mm), los registros fueron obtenidos del portal de datos abiertos del INAMHI,
entidad que proporciona estadisticas de precipitacion mensual generadas por estaciones
meteoroldgicas en todo el pais. En el analisis preliminar se detectaron meses sin datos
disponibles, por lo cual, en la fase de limpieza se aplica la técnica estadistica “Interpolacion
temporal lineal”, aplicada para completar esta informacion.

o Consumo energético (kwh), los datos se obtienen de la empresa eléctrica de Galapagos, del
“Plan de Transicion Energética de las Islas Galapagos”, en este plan se presentan los datos
de energia eléctrica total consumida por afio, desde el 2007 al 2022 desglosadas por grupo
de consumo (comercial, industrial, residencial, otros), no se cuenta con un consumo
desagregado por sector, por lo cual se usara el consumo energético total anual como proxy
para la disponibilidad energética, para reducir el sesgo que se introduce por todos los
grupos mencionados, normalizaremos la energia total por la poblacion anual (energia per
capita). El desarrollo de la misma se realizara en la fase de limpieza.

Los datos publicados en el plan de transicion energética van desde 2007 hasta 2022. Para
cumplir con el intervalo de estudio (2005-2024) y obtener el consumo energético de los afios
faltantes, se aplica la técnica “Extrapolacion Lineal”, la cual se desarrolla en la fase de limpieza.
. Produccion de alimentos local (kg), los datos base se obtuvieron de estudios cientificos

realizados sobre los beneficios de la produccion local frente a la importacion de alimentos,

seguridad hidrica y los sistemas agricolas bajo escenarios de uso de suelo y cambio
climatico (Sampedro et al., 2020), el Plan de reactivacion Galapagos 2030, en el que se

estima una produccion anual de 563 toneladas para 2014 (Gobierno de Galapagos, 2020),

y analisis centrados en determinar las condiciones del agua de origen natural como base

para la formulacion de practicas agricolas sostenibles, en el que se menciona la produccion

anual de 575 toneladas para 2017 (Carrion-Mero et al., 2024). Esto en una superficie
productiva agropecuaria de 19.010 ha para cultivos de ciclo corto (cebolla, tomate, etc.).

Dado que solo se cuenta con dos puntos de anclaje, se procede a completar los datos
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aplicando técnicas estadisticas de interpolacion y extrapolacion lineal, las cuales se

desarrollan en la fase de limpieza.

Para completar las series de datos se opta por la aplicacion de interpolacion lineal y
extrapolacion simple por sobre otras como series de tiempo o regresion multiple debido a las
siguientes consideraciones propias del estudio:

. Escasez de datos: al no contar con suficiente informacion la aplicacion de métodos mas
avanzados no seria factible ya que requieren de suficientes observaciones para identificar
patrones y tendencias

o Simplicidad y trazabilidad metodoldgica: estos modelos aseguran resultados consistentes
faciles de interpretar sin sobreajuste.

Limpieza
Durante esta fase se procede con la revision de inconsistencias y la completitud de valores

faltantes, se estandarizan las medidas de todas las variables del nexo, se aplican técnicas

estadisticas diferentes para cada caso.

o Poblacion: Para completar los datos de la serie (2005- 2024) se aplica el calculo de la tasa

anual compuesta de crecimiento poblacional conforme a lo siguiente (Ecuacion 1):

1. Calculo de la tasa anual compuesta de crecimiento poblacional r
1
_ (ﬁ)(h—yo) _
=7,
(1)
Sea (o, Py) ¥ (1, P1) dos puntos censales consecutivos, donde:
V. afo inicial P,. Poblacién en el afo inicial
y,. afio final P;. poblacion en el afio final
2. Estimacion de la poblacion en afios intermedios: Con la tasa r, la poblacion para un afio

intermedio y tal que y, <y < y; se estim6 como (Ecuacion 2)

P(y) =Py x(1+1r)Y o

)
Este procedimiento se aplico de forma independiente para los intervalos: 2001-2010; 2010-2015;
2015-2022
3. Extrapolacion para afios posteriores (2023, 2024), se aplica la misma tasa anual compuesta

r del ultimo intervalo 2015-2022, proyectando la poblacion de la siguiente manera
(Ecuacion 3):
P(2023) = Pypp X (1 +71)
P(2024) = Pygp, X(1 4 1)?
3)
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Precipitaciéon: Para completar los datos de los meses faltantes en esta variable, se aplica la

técnica: “Interpolacioén temporal lineal”. (Ecuacion 4)

Pfaltante k = Panterior +

.(Psiguiente — Panterior
n+1 (Psig )

Donde K=1,2,...,n “4)

Consumo energético: Para determinar el consumo energético realizamos los siguientes

pasos:
1. Se aplica la técnica “Extrapolacion Lineal” (Ecuacion 5) para estimar los datos faltantes y
completar la serie en estudio (2005 -2024)
P(t) = P(¢1) + —— .(P(t2) — P(t1))
t2—tl
6]
2. Se realiza la normalizacion de la energia total por la poblacion anual (energia per capita),
55aplicando la siguiente formula (Ecuacion 6):
E
EP¢ = F:
(6)
Donde: E; = Energia total consumida en Galapagos Enel afio t
P, = Poblacion estimada en Galapagos en el afio t
E f © = Consumo energético percapita en el afio t
o Produccion de alimentos: Al contar con escasos datos historicos de la produccion local
en Galapagos, se procede a calcular la pendiente lineal entre los dos puntos de anclaje
(Ecuacion 7) posterior se realiza la interpolacion lineal entre los puntos de anclaje
(Ecuacion 8), continuamos con la extrapolacion hacia adelante (2017 — 2014) y
extrapolacion hacia atras (2014 - 2005) (Ecuacion 4) sobre estimaciones puntuales,
Calculo de la pendiente lineal entre los puntos de anclaje conocidos
= Y2-Yv1
X2 -X1
(7)
Donde: x= afio, y= produccion
Calculo de la interpolacion/extrapolacion Lineal
P(y) = P(yo) + m.(y = ¥o)
8)
Donde:
1. P(y): Produccion estimada en el afio y
2. P(yo): Produccién conocida en el afio base y,
3. M = pendiente (toneladas afio)
4. y —yy =diferencia de afos (positiva si proyectamos hacia adelante, negativa si hacia atras)
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Transformacién
Se transforma los datos a una escala adecuada para su posterior analisis
. Precipitacion: Dado que los datos de esta variable vienen en meses y los necesitamos en
afos, procedemos a cambiar su representacion, es decir, realizar el paso de meses a su valor
en afios. Para lograr este objetivo, se procede a realizar la suma de todos los meses de un
afio y a sacar el promedio o media aritmética. Este proceso se realiza para todos los afios
que seran usados en el estudio (2005-2024).
o Consumo energético: Los datos del consumo energético se encuentran en MWH por lo
cual se procede a realizar la transformacion a KWH
IMwh= 1000 Kwh
Seleccién de Variables
Para la seleccion, se aplica la técnica de correlacion de Pearson a las variables del nexo
(Agua, Energia, Produccion).
La correlacion de Pearson es una métrica estadistica utilizada para cuantificar qué tan fuerte
y en qué direccion se relacionan dos variables continuas a través de una dependencia lineal. En
esencia, identifica si el incremento o disminucién de una variable se acompafia de cambios
similares en la otra.
Su aplicacion a las variables del nexo antes de aplicar los modelos permite:

e Detectar las variables que estan altamente relacionadas con la variable objetivo

e Ayuda en la optimizacion del modelo, ya que se puede visualizar qué variables no aportan
0 qué podria ingresar ruido en el modelo.

e Reduce el riesgo de sobreajuste, ya que al conocer qué variables se relacionan con mas
fuerza con la variable objetivo (Produccion agricola), se mejora la generalizacion del
modelo.

Tabla 1

Matriz de correlacion

_ Precipitacion ~ Produccion Agricola ~ Energia Percapita

Precipitacion 1.00 0.249 0.164
Produccion Agricola 0.249 1.00 0.8914
Energia Percépita 0.164 0.8914 1.00
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Figura 2
Mapa de calor

Matriz de Correlacion - Variables WEFE
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precipitacion produccion_agricola energiapercapita
Fuente: Elaboracion propia con librerias de python

Tabla 2

Interpretacion de resultados

Relacion variables  Valor Conclusion

Precipitacion/ 0.25 Existe una correlacion positiva leve, puede ser debido a que la

produccion_agricola produccioén agricola local, depende tambien de otras fuentes de
agua (Paltan et al., 2023)

Precipitacion/energia 0.164 Correlacion positiva leve: al aumentar la lluvia, el consumo

per capita energético se incrementa ligeramente por el uso de sistemas

eléctricos en varias actividades agricolas (Jaramillo Diaz et al.,
2022).
Produccion Agricola 0.891 Correlacion positiva muy fuerte, en el contexto de Galapagos

/Energia per capita puede ser que en tiempos de sequia los agricultores acuden al
agua transportada y el uso de diferentes tecnologias como
Waterboxx (Jaramillo Diaz et al., 2022)

Los resultados reflejan que la produccion agricola mantiene una asociacion positiva considerable
con la energia per cdpita., por lo cual, la produccion agricola local estaria fuertemente vinculada
al consumo energético dado la escaces de recursos hidricos de buena calidad que apoye al
adecuado riego de los cultivos, segun un estudio realizado (Carrién-Mero et al., 2024) solo el
55.88% de las 34 fuentes que hay en las islas Galapagos son aptas para riego, lo que conlleva a la
importacion de productos y agua desde el continente. Para visualizar la relacion individual de las

dos variables, aplicamos un grafico de dispercion, teniendo los siguientes resultados:
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Figura 3

Grdfico de Dispercion entre las variables Consumo Energético y Produccion agricola

Relacion entre Consumo Energético y Produccion Agricola
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Fuente: Elaboracion propia aplicando librerias de Python

En la grafica no se evidencian outliers graves, se visualiza una ligera dispersion cuando el
consumo energético supera los 1,8 Kwh per cépita; sin embargo, los valores siguen el patron
esperado.

La correlacion observada de Pearson con un valor igual a 0.891 entre la produccion agricola
y la energia per capita es consistente con la necesidad energética elevada en el sistema agricola
de Galapagos, por lo cual nuestra variable independiente sera la energia per capita
Mineria de datos

Esta etapa es el corazon de la metodologia, ya que en ella se aplican los modelos en estudio
a los datos previamente seleccionados para realizar predicciones basadas en un modelo
establecido.

Con la finalidad de tener una amplia gama de resultados y seleccionar el modelo que nos
permita alcanzar nuestro objetivo “Predecir la produccion agricola local de Galapagos de los
proximos 10 afios con base en la energia per capita utilizada”, se proponen 7 modelos de regresion
supervisada, todos eficaces en el analisis de relaciones lineales y no lineales.

Regresion Lineal: Consiste en una aproximacion lineal destinada a explicar como una
variable dependiente se relaciona con una o varias variables independientes. El proceso determina
la recta 6ptima que describe de manera mas precisa los datos disponibles. (Seber & Lee, 2012)

Random Forest: Corresponde a un método comun en aprendizaje automatico que fusiona
las decisiones generadas por multiples arboles para generar un unico resultado, permitiendo

abordar tanto analisis de clasificaciéon como de regresion. (Breiman, 2001)
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Support Vector Regression (SVR): Es un modelo basado en los mismos algoritmos de
las maquinas de vectores de soporte, SVR encuentra un hiperplano con el margen maximo entre
los puntos de datos, todo dentro de un margen de tolerancia (Drucker et al., 1997)

Red Neuronal Artificial (ANN): Es un sistema capaz de tomar decisiones de manera
parecida al cerebro humano, ya que utiliza mecanismos inspirados en el trabajo conjunto de las
neuronas para reconocer patrones, evaluar alternativas y generar conclusiones. (Haykin, 1999)

Gradient Boosting: Es un método de aprendizaje automatico aplicado tanto en regresion
como en clasificacion estadistica, que construye un modelo predictivo combinando multiples
predictores simples —generalmente arboles de decision (Friedman, 2001).

XGBoost: Este método se basa en arboles de decision y supone una mejora sobre otros
métodos, como el bosque aleatorio y refuerzo de gradientes. Funciona bien con datasets grandes
y complejos al utilizar varios métodos de optimizacion. (Chen & Guestrin, 2016).

K-Nearest Neighbors (KNN): Es un método de clasificacion que decide la categoria de
un dato nuevo basandose en las clases a las que pertenecen sus vecinos mas proximos dentro del
conjunto de datos. (Cover & Hart, 1967)

Con los algoritmos seleccionados se procede con la implementacion de cada uno mediante
la herramienta Google Colab.

Para el entrenamiento se utilizo el 80% del conjunto de datos y el 20% para la validacion.
Para cada algoritmo, se entren6 el modelo con los datos histdricos de consumo de la energia per
capita como variable predictora y la produccion como variable objetivo.

A cada modelo se le calcularon las métricas de evaluacion MAE, RMSE y R2, las cuales se
emplean en analisis de datos y estadistica para valorar la precision y desempefio de los modelos
de regresion y prediccion.

Mae (Mean Absolute Error) resume cuanto difieren, en promedio, los valores que predice
un modelo respecto a los observados, tomando unicamente la distancia absoluta entre ambos
(Ecuacion 9). Esta medida refleja la magnitud tipica de los errores cometidos durante la prediccion

y mantiene las mismas unidades que la variable analizada. (Cover & Hart, 1967)

MAE = ——3ore |y, — 3
9
Donde y; = valor real; y; = valor previsto; norte = nimero total de observaciones.

RMSE (Root Mean Squared Error): Es una métrica de evaluacion de precision
comunmente utilizada en el analisis de regresion que mide la magnitud promedio de los errores
en un modelo de regresion (Ecuacion 10). Esta métrica indica la desviacion estandar de los errores
del modelo.

Un RMSE mas bajo sugiere menores errores de prediccion promedio y, por lo tanto,

predicciones mas precisas (Chai & Draxler, 2014).

UNIVERSIDAD
U I lc TECNOLOGICA . .
INTERCONTINENTAL Vol. 12/ Num. 4 2025 pag. 2592




RusE = [P0 - 92
(10)
Donde:
e v, ,es el valor real de la observacion i.
e y;,es el valor previsto para la observacion i.
e nes el numero total de observaciones.

R2 (Coeficiente de determinacion): es un indicador numérico que muestra qué tan bien
las variables explicativas de un modelo logran representar las variaciones observadas en la
variable que se desea predecir (Ecuacion 11). Su rango oscila entre 0 y 1, cuanto mas cerca esta
de 1, mejor es el ajuste del modelo (Theil, 1971).

La formula para calcular es:

Variacion inexplicable

RZ=1

Variacion total
(11)
Estas métricas permiten comparar la precision y capacidad de generalizacion de cada
algoritmo, con la finalidad de identificar cudl proporciona la mejor prediccion para el caso de
estudio en Galapagos.

RESULTADOS Y DISCUSION

Tras definir MAE, RMSE y R? como las métricas que permitiran evaluar el desempefio
estadistico y predictivo de cada modelo de regresion, se exponen a continuacion los resultados
alcanzados por cada uno de los algoritmos analizados:

Tabla 3

Resultados de cada algoritmo para cada una de las métricas de evaluacion

Modelo MAE | RMSE | R?*? Desempeiio

R .
CBTSIOM 1084940 1127272 086 Bueno, modelo base solido
Lineal
Random 1196119  13578.55 081 Desempeiio mas bajo que Regresion Lineal,
Forest puede ser porque son pocos datos
SVR 30994.60 31553.53 -0.025 Muy mal desempeiio
Red ~
559963.31 560829.63 -322.92 Muy mal desempefio
Neuronal
Gradl.ent 2003.55 1015632 0.8938 Buen desempefio, mejor que Regresion Lineal y
Boosting Random Forest

Muy buen desempefio, bajo error y muy buen

XGBoost  8000.06 8485.33 0.9258 R2
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Modelon MAE| RMSE| R*{  Desempeiio

Muy buen desempefio, captura muy bien la
KNN (k=3) 16,000.00 17,400.61 0.9527 varianza de los datos, pero los errores en escala
son mas grandes

Figura 4
Grdfico de los datos obtenidos de la métrica MAE
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Grdfico de los datos obtenidos de la métrica RMSE
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Figura 6
Grdfico de los datos obtenidos de la métrica R?
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Figura 7

Comparacion de modelos

Comparacion de Modelos (Radar)
—— Regresion Lineal
MAE Random Forest

— SVR
=~ Red Neuronal
—— Gradient Boosting
—— XGBoost

KNN

Este tipo de graficos nos indica que cuanto mas cerca del borde externo estén las lineas del
modelo, mejor es su desempeiio general.

Conforme a los datos obtenidos, observamos que KNN ofrece un mejor R? pero con errores
muy altos, por lo cual podriamos concluir que el modelo es arriesgado para predicciones a futuro.
Sin embargo, XGBoost generaliza bien con pocos datos y puede extrapolar hacia el futuro con
mayor estabilidad que KNN. Por lo mencionado, el modelo mas adecuado es XGBoost.

Por lo expuesto y los resultados positivos, se procede con la aplicacion del algoritmo
XGBoost como modelo para la prediccion de la produccion agricola local en Galapagos para los
proximos 10 afios, ya que se confirma que el modelo es muy robusto en problemas de prediccion

pocos datos.
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Para generar las predicciones con el modelo XGBoost se aplican las librerias xgboost,
XGBRegressor desde xgboost.sklearn, MinMaxScale de sklearn.preprocessing para realizar la
normalizacion de escalas y prevenir datos planos por la diferencia de escalas entre la variable
objetivo (Produccion) y la variable independiente (energiapercapita). Se trabaja con el entorno de

desarrollo Google Colab, teniendo los siguientes resultados:

Tabla 4
Resultado de aplicar ML
Consumo Produccion
Energético Agricola Predicha
2025 1.81 593899.0625
2026 1.86 591001.9375
2027 1.92 579381.3125
2028 1.97 579381.3125
2029 2.03 579381.3125
2030 2.08 579381.3125
2031 2.14 579381.3125
2032 2.19 579381.3125
2033 2.25 579381.3125
2034 2.31 579381.3125
Figura 8

Consumo energetico Proyectado

Proyeccion de Energia per capita
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Figura 9

Produccion Agricola proyectada
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Como se puede observar en la grafica (Figura 9), la energia per capita tiene un crecimiento
gradual en los proximos 10 afios; sin embargo, la produccion agricola (Figura 10) muestra una
ligera caida, y a partir de 2027 se mantiene constante sin variaciones significativas a pesar de que
la energia per céapita aumenta, lo que nos muestra que el conjunto de datos actual no permite
realizar predicciones significativas y realistas.

La proyeccion uniforme surge como resultado de la limitada disponibilidad de informacion
y del uso de métodos de interpolacion para rellenar los valores faltantes. Este resultado permitio
analizar las siguientes limitaciones con las que se cont6 al comenzar el estudio:

1. Escasez y discontinuidad de datos: Este factor implicé la necesidad de recurrir a
interpolaciones y extrapolaciones para completar los valores faltantes y asi mantener la
continuidad de la serie, sin embargo, se denota una afectacion en la capacidad predictiva
del modelo a largo plazo, lo cual se podria mejorar aplicando métodos como Bootstrapping
o imputacion multiple en futuros estudios.

2. Analisis técnico: Se realiza un diagnostico comprensivo de la Calidad de Datos que incluye
técnicas como: Analisis de patrones de missing values, Test de aleatoriedad de datos
faltantes (Little's MCAR) y Evaluacion de consistencia temporal.

3. Resultados Obtenidos: El analisis reveld un puntaje de calidad de 0.75 (riesgo medio),
confirmando que las interpolaciones introducen un margen de error del 20-25% en las
predicciones.

4. Posibles relaciones espurias entre las variables: Por la correlacion Alta entre energia per
capita y produccion agricola

5. Analisis Técnico: Se aplica Analisis Causal con Knowledge Graphs que incorpora: Grafos
causales basados en conocimiento experto, Test de causalidad de Granger y Modelos de

ecuaciones estructurales.
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6. Resultados Obtenidos: Se identificd que aproximadamente entre un 15 % y un 25% de la
correlacion observada representa una relacion causal real. Mientras que el 75 — 85 %
restante se explica por tendencias temporales paralelas y variables omitidas.
7. Proyecciones Planas no Realistas: Proyeccion plana hasta el 2034 por falta de
variabilidad en los datos de entrada.
8. Analisis técnico: Para validar la robustez del modelo se aplica el modelo bayesiano con:
efectos jerarquicos por afio, Splines cubicos y componentes estacionales y de tendencia.
Resultados Obtenidos: A continuacion, los escenarios proyectados para 2025-2034
o Estabilidad productiva estimada del 65%: este escenario refleja equilibrio entre
energia per capita y produccion agricola.

e  Crecimiento moderado estimado en 25%: con un crecimiento gradual de la produccion
de 1 a 2% anual si se mantiene un suministro de energia confiable.

e Posible declive alrededor del 10%: puede darse un declive en la produccion si
existieran limitaciones energéticas o eventos climaticos adversos.

Incertidumbre no cuantificada
Analisis Técnico: Para cuantificar la incertidumbre de las proyecciones se implementa la

inferencia bayesiana con cuantificacion de incertidumbre mediante: distribuciones posteriores

completas, intervalos de credibilidad del 89% y analisis de sensibilidad a priori.

Resultados obtenidos: Para 2034, la produccion agricola proyectada es 564,400 + 20,000
kg, indicando que el rango probable oscila entre 544,400 y 584,400 kg.

Validacion insuficiente: Dada la escasez de datos, es recomendable aplicar métricas para
datos escasos.

Analisis técnico: Se disefia un framework de validacion para series cortas que incluye:
validacion cruzada temporal bloqueada, pruebas con datos sintéticos, métricas de negocio
especificos

Resultados obtenidos: El modelo muestra estabilidad alta media (puntaje =~ 0.78/1.0) y
una capacidad solida de generalizacion temporal, manteniendo un RMSE promedio de =~ 1848
entre bloques y un R? sintético = 0.965 £ 0.025. Demostrando robustez ante datos incompletos
(22,5 % de faltantes).

Validacion con escenarios hipotéticos: No se realiza la aplicacion del modelo con datos
externos o escenarios hipotéticos, por lo cual los resultados obtenidos son validos dentro de la
serie de datos establecida.

Cada limitacion técnica identificada tiene una respuesta concreta en las recomendaciones.
La aplicacion conjunta de estas acciones permitira que el modelado del nexo WEF en Galapagos
evolucione de un simple analisis académico a un instrumento solido que respalde decisiones

estratégicas en materia de sostenibilidad
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Recomendaciones

o A nivel del Gobierno, establecer una politica para el registro anual de fuentes hidricas y el
volumen que utilizan los agricultures; de esta forma, garantizar que futuros analisis
contaran con series completas de datos, reduciendo la incertidumbre de las predicciones
del actual 25% a menos del 10%, permitiendo modelar con precision la relacion real entre
disponibilidad hidrica y produccion agricola.

o Dar mayor relevancia al Nexo WEF, sustentado en el hallazgo de que, al controlar por
variables de confusion mediante modelos causales, la energia explica solo el 25% de la
variacion en produccion, esta estimacion podria estar influenciada por variables omitidas
que estarian afectando tanto a la energia como a la produccidn, entre las que podrian estar
politicas agricolas o cambios en el tipo de cultivo. Esto destaca la necesidad de politicas
integradas que consideren multiples factores simultdneamente que pueden contribuir a la
toma de decisiones orientadas a la sostenibilidad.

o Incentivar tecnologias que promuevan el uso de energia renovable que asegure un
suministro constante de energia, esto como respuesta al escenario de mayor probabilidad
identificado con el modelo bayesiano, donde el crecimiento moderado de la produccion
solo es posible si se mantiene el acceso energético actual. Las energias renovables emergen
como factor estabilizador ante posibles crisis en suministro de combustibles.

o Implementar dispositivos [oT que permitan monitorear de manera permanente y en tiempo
real los parametros clave del nexo, de esta forma, reducir la banda de incertidumbre
identificada de = 20.000 kg en un 70%, permitiendo ajustes dinamicos en politicas
agricolas.

o En base al analisis de estabilidad que muestra confianza media alta de 78%, contar con
bases de datos robustas, desagregadas por sectores, mejoraria la calidad de datos,
aumentando la confianza por encima del 88%, haciendo las predicciones aptas para
planificacion estratégica en lugar de solo alertas tempranas.

o Se sugiere efectuar evaluaciones de validacion a futuro empleando datos generados
mediante escenarios hipotéticos simulados. Para garantizar la reproducibilidad del modelo,
puede utilizarse el codigo disponible en el enlace proporcionado:
https://github.com/RouseCC/ModelosML_Galapagos.git,

CONCLUSIONES

La aplicacion del mapa de calor mostrd una correlacion alta de 0,89 entre energia per capita
y produccion agricola, bajo lo cual se continu6 con el analisis. Sin embargo, al aplicar el modelo
XGBoost, para realizar predicciones hacia adelante, este no reproduce la misma fuerza en esta

relacion debido a la minima variabilidad en los datos de la energia per capita. Esto demuestra que,

aunque dos variables estén fuertemente relacionadas, dicha asociacion no debe interpretarse como
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https://github.com/RouseCC/ModelosML_Galapagos.git

una relacion causal, mientras que la correlacion mide la relacion en los datos observados, el
modelo XGBoost necesita que las variables proyectadas también varien lo suficiente para capturar
esa relacion y amplificarla.

El modelo planteado nos deja ver una proyeccion plana de la produccion agricola, lo cual
nos muestra que la energia per capita, en los niveles proyectados, no genera un impacto sustancial
en la produccidn en los proximos 10 afios. El analisis predictivo de XGBoost muestra que bajo
escenarios de poca variabilidad futura en energia y clima, esa relacion pierde fuerza.

El diagnodstico de calidad reveld que nuestras interpolaciones introducen hasta 25% de
incertidumbre. Por ello, la Recomendacion 1 (registros anuales de fuentes hidricas) es crucial:
garantiza que en 3 afios tendremos series completas, reduciendo el error a menos del 10% y
permitiendo modelar con precision las relaciones hidrico-productivas.

Clarificacion de Relaciones Causales: Los grafos causales demostraron que solo el 25% de
la correlacion energia-produccion es causal real. Por esto, la Recomendacion 2 (enfoque integral
del nexo) es esencial dado que politicas que solo optimicen energia ignoraran el 75% de factores
determinantes, llevando a intervenciones suboptimas.

Escenarios Realistas de Futuro: El modelado bayesiano identifico tres futuros plausibles,
siendo el mas probable (65%) un crecimiento moderado condicionado a acceso energético estable.
Por tanto, la Recomendacion 3 (energias renovables) asegura el escenario favorable y mitiga
riesgos de los escenarios desfavorables.

Toma de Decisiones con Incertidumbre Cuantificada: Nuestras proyecciones incluyen
ahora bandas de incertidumbre (£ 20,000 kg). Por esto, la Recomendacion 4 (tecnologia 1oT) es
prioritaria: reduce esta incertidumbre en 70%, transformando predicciones de alertas generales a
herramientas de gestion precisa.

Cimientos para Futuras Investigaciones: La validacion rigurosa muestra confianza media-
alta de (78%) en predicciones. Por ello, la Recomendacién 5 (bases de datos robustas) es
fundamental: eleva la confianza sobre 85%, haciendo posible usar estos modelos para asignacion
presupuestaria y no solo para orientacion general.

Cada limitacion técnica identificada tiene una respuesta concreta en nuestras
recomendaciones. La implementacion de este paquete de medidas transformara el modelado del
nexo WEF en Galapagos pasar de ser un analisis tedrico a convertirse en un instrumento solido
que respalde decisiones orientadas a la sostenibilidad"

De manera general, se evidencia que el nexo constituye una herramienta analitica 0til para
comprender las interdependencias entre recursos que son considerados criticos en Galapagos y su
impacto en la produccion agricola local. Sin embargo, la escasez de datos sectorizados y la
necesidad de interpolaciones resaltan la urgencia de fortalecer los sistemas de monitoreo e

informacion de la region.
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